Airway biology
GPCR biology
Asthma pharmacology
Renal transporter biology
Cancer biology
Asthma, COPD
Obstructive and fibrotic lung diseases
Chronic metabolic acidosis
The major focus of my research is to identify cellular and molecular mechanisms by which G protein-coupled receptors (GPCRs) mediate important functions in airway cells. GPCR signaling regulates contractile function, synthesis and release of autocrine factors, and cell growth/survival in various airway cells, including airway smooth muscle (ASM), airway epithelium, lung fibroblasts, and T lymphocytes. Aberrant GPCR signaling or exaggerated presentation of GPCR stimuli can promote ASM hypercontractility, airway remodeling, and ASM hyperplasia/hypertrophy, all of which contribute to the pathogenesis of asthma and COPD. Moreover, GPCRs appear to mediate important mitogenic and survival signaling pathways in cells comprising the tumor microenvironment- including epithelia, fibroblasts, stem cells, and inflammatory cells- rendering them potentially important therapeutic targets in the treatment of cancer. Finally, many GPCR genes possess mutations that alter their expression or function; we are particularly interested in characterizing such altered function and its contribution to disease state or disease therapy.