Dessislava Markova, PhD
Research Assistant Professor
Contact
1015 Walnut Street
Curtis Building, Suite 501
Philadelphia, PA 19107
215-955-7655
215-955-9773 fax
Dessislava Markova, PhD
Research Assistant Professor
Education
Medical School
PhD, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria - 1995
Most Recent Peer-Reviewed Publications
- Circulating microRNAs May Be Predictive of Degenerative Cervical Myelopathy
- The Inhibitory Effect of NSAIDs and Opioids on Spinal Fusion: An Animal Model
- Varenicline mitigates the increased risk of pseudarthrosis associated with nicotine
- Inhibition of Neurogenic Inflammatory Pathways Associated with the Reduction in Discogenic Back Pain
- Do Inflammatory Cytokines Affect Patient Outcomes After ACDF?
Expertise & Research Interests
Our laboratory is engaged in elucidating the molecular mechanisms of axial back pain.
Major research focus of our lab is to study the cytokine gene expression and protein levels in human discs. Our laboratory is currently studying the cytokine profile of the posterior annulus fibrosus (AF) from patients with degenerative disc disease( DDD). Chemical irritation or pressure on sinuvertebral nerve endings, which convey pain sensation from the posterior disc, has been implicated in the development of axial and lower extremity pain in patients with (DDD). Analysis of cytokine profiles of the posterior AF may help to elucidate inflammatory responses specific to this region of the disc in hopes of developing targeted therapies.
Another major research interest is to investigate and optimize the environmental conditions in an in vitro organ culture system that modulate the function of nucleus pulposus and annulus fibrosus cells to mimic early degenerative changes of the disc. Our laboratory is studying the molecular changes in expression of genes involved in matrix synthesis and turnover after the application of electrical stimulation to the in vitro rat organ cultured system. Results of this study will provide a detailed analysis of the effects of electrical stimulation on repair of the nucleus pulposus and annulus fibrosus cells at the cellular and molecular level. Moreover, the data will help to design a treatment strategy for future in vivo experiments, in terms of the dose, time and the optimum biological response.